You are here: Home Technical Articles Environmental Analyse Haloacetic Acids in Under 13 Minutes with Rtx®-CLPesticidesColumns
By Jason Thomas, Environmental Innovations Chemist
Modern water treatment technologies provide safe, reliable drinking water and have substantially curbed outbreaks of water-borne diseases such as typhoid and cholera. However, the use of disinfectants in water treatment facilities can also lead to adverse health effects caused by the formation of disinfection byproducts (DBPs). DBPs are created by the reaction of the disinfection agent with naturally occurring organic matter and inorganic salts. Haloacetic acids (HAAs), for example, are a type of DBP that can form when chlorine is used as a disinfectant. DBP levels must be monitored in potable water supplies to ensure that the maximum allowable levels are not exceeded. Testing for HAA compounds in drinking water is usually done according to EPA Method 552.2; however, labs using this method struggle with low sample throughput due to long analytical run times.
Sample throughput can be significantly increased by choosing phases with a unique selectivity for HAAs. Using Rtx®-CLPesticides and Rtx®-CLPesticides2 columns all target HAAs were resolved in less than 13 minutes (Figure 1). Two elution order changes were observed between the columns: methyl trichloroacetate/1,2,3-trichloropropane and methyl bromodichloroacetate/methyl dibromoacetate. Notably, pairs which are extremely difficult to separate under method conditions, such as methyl dichloroacetate/dalapon methyl ester and methyl chlorodibromoacetate/methyl 2,3-dibromopropionate, were easily resolved on these columns.
In addition to performing well for haloacetic acid analysis, Rtx®-CLPesticides and Rtx®-CLPesticides2columns give excellent results for other GC/ECD methods, including methods for chlorinated pesticides, chlorinated herbicides, and PCBs. Labs can increase HAA sample throughput and reduce the downtime spent changing columns between methods by switching to Rtx®-CLPesticides and Rtx®-CLPesticides2 columns.
Figure 1 Increase sample throughput for haloacetic acids withRtx®-CLPesticides/Rtx®-CLPesticides2 columns. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|